热门
最新
红包
立Flag
投票
同城
我的
发布
大模型被偷家!腾讯港中文新研究修正认知:CNN搞多模态不弱于Transfromer
在Transformer占据多模态工具半壁江山的时代,大核CNN又“杀了回来”,成为了一匹新的黑马。
腾讯AI实验室与港中文联合团队提出了一种新的CNN架构,图像识别精度和速度都超过了Transformer架构模型。
切换到点云、音频、视频等其他模态,也无需改变模型结构,简单预处理即可接近甚至超越SOTA。
团队提出了专门用于大核CNN架构设计的四条guideline和一种名为UniRepLKNet的强力backbone。
只要用ImageNet-22K对其进行预训练,精度和速度就都能成为SOTA——
ImageNet达到88%,COCO达到56.4 box AP,ADE20K达到55.6 mIoU,实际测速优势很大。
在时序预测的超大数据上使用UniRepLKNet,也能达到最佳水平——
例如在全球气温和风速预测上,它就超越了Nature子刊上基于Transformer的前SOTA。
更多细节,我们接着看作者投稿。点击查看:https://blog.csdn.net/QbitAI/article/details/135190013
AI资讯
CSDN App 扫码分享
评论
1
打赏
- 复制链接
- 举报
下一条:
喜提百万访问量,记录一下