热门
最新
红包
立Flag
投票
同城
我的
发布
六指琴魔迟来大师
4 年前
trueweixin_44124323
人分为rich和poor两种,人有感性因素,有时会导致rich和poor出现混合颠倒。
下一条:
Spark最初由美国加州伯克利大学的AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。Spark特点Spark具有如下几个主要特点:运行速度快:Spark使用先进的DAG(Directed Acyclic Graph,有向无环图)执行引擎,以支持循环数据流与内存计算,基于内存的执行速度可比Hadoop MapReduce快上百倍,基于磁盘的执行速度也能快十倍;容易使用:Spark支持使用Scala、Java、Python和R语言进行编程,简洁的API设计有助于用户轻松构建并行程序,并且可以通过Spark Shell进行交互式编程;通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件,这些组件可以无缝整合在同一个应用中,足以应对复杂的计算;运行模式多样:Spark可运行于独立的集群模式中,或者运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。Spark相对于Hadoop的优势Hadoop虽然已成为大数据技术的事实标准,但其本身还存在诸多缺陷,最主要的缺陷是其MapReduce计算模型延迟过高,无法胜任实时、快速计算的需求,因而只适用于离线批处理的应用场景。回顾Hadoop的工作流程,可以发现Hadoop存在如下一些缺点:表达能力有限。计算都必须要转化成Map和Reduce两个操作,但这并不适合所有的情况,难以描述复杂的数据处理过程;磁盘IO开销大。每次执行时都需要从磁盘读取数据,并且在计算完成后需要将中间结果写入到磁盘中,IO开销较大;延迟高
立即登录